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Abstract. In charge-transfer collisions of C4+(1s2 1S) with He (1s2 1S), the process of double electron
capture into the ground state C2+ is well-known to dominate other channels by an order of magnitude for
projectile energies below 10 keV. This work presents a calculation of differential cross-sections resolved in
the angle and energy gain variables, based on an ab initio treatment of electronic states, and compares
with the measurements published in the literature (projectile energy E = 270, 400, and 470 eV). We also
briefly discuss the semi-empirical two-state models developed by experimentalists for this process.

PACS. 34.70.+e Charge transfer – 31.15.Ar Ab initio calculations

1 Introduction

Experimental data on electron capture in charge trans-
fer collisions of C4+ with He have been abundant in the
literature, both for integral and angle-differential cross-
sections [1–5]. By contrast, theoretical works based on ab
initio potentials are extremely scarce; this is in part due
to the difficulty in calculating the interaction between the
closed 1s2 shells of C4+ ion and He atom. The most elab-
orate theoretical work to date presents a calculation of in-
tegral single-capture (SC) and double-capture (DC) cross-
sections by Kimura and Olson [6], who used an ion-core
pseudo-potential for C2+(1s2), dealing explicitly with the
two active valence electrons. Reference [6] provides the
integral cross-section data for projectile energies between
750 eV and 200 keV.

To date, experimentalists have mostly relied upon
semi-empirical representations of the system (e.g. 2-state
model in Ref. [3] or 4-state model in Ref. [4]), using
polarization and Coulomb-type diabatic potentials with
position-dependent effective charges, or potentials defined
as an interpolation between the asymptotic terms for low
and large internuclear distance R. In either case, the cou-
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pling between the diabatic states was estimated by an
elaborate analytical formula of Grozdanov and Janev [7]
with adjusted parameters. Model potential curves were
also used to deduce the diabatic coupling in an inverse
problem (fitting model to cross-section data) [8], resulting
in different coupling terms than in reference [7]. By using
free parameters in the model formulas, experimental data
could be modelled rather accurately, yet the potentials
and coupling terms vary among the experimental groups.
Clearly, since CHe4+ is now an inexpensive 4-electron sys-
tem even for large basis sets, a full ab initio calculation
is therefore preferable. The differential cross-sections also
depend more strongly on the details of the interaction, and
represent a stricter test on the accuracy of theory as com-
pared to the integral cross-sections published before [6].

Here we calculate the differential cross-sections for
the above process, motivated by recent publications of
state-resolved angle-differential and energy-gain differen-
tial cross-sections in the literature [1,2]. The differential
cross-sections for the main capture channel are evaluated
in both equivalent forms, and compared with the exper-
imental data available for the collision energy E = 270,
400 and 470 eV.

The paper is organized as follows. Section 2 summa-
rizes the ab initio calculation and compares the result-
ing potentials and couplings to empirical models used by
experimentalists. Section 3 briefly explains the standard
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Fig. 1. Potential energy curves of CHe4+: (a) overall behavior and asymptotic assignments of the initial channel (IC), single
electron capture channels (SC) and double electron capture channels (DC); (b) transition region and location of the crossing
point Rx; (c) detailed view of the potential energy curves. The horizontal line (consisting of several adiabatic state components)
corresponds to the initial state C4+(1s2 1S)|He(1s2 1S). All other curves show Coulomb potential asymptotics (SC and DC
states).

theoretical procedure and lists the kinematic and cross-
section transform relations in order to compare with ex-
periment. Results are discussed in Section 4. Section 5
concludes the paper. Atomic units are used throughout
unless mentioned otherwise.

2 Electronic states of CHe4+

In order to obtain the potential curves of the C4+/He
system, we have carried out ab initio configuration in-
teraction calculations by using an extended version of the
multireference single- and double-excitation MRD-CI pro-
grams [9]. The correlation consistent polarized valence
quadruple zeta, cc-pVQZ Gaussian basis [10] was em-
ployed for the C and He atoms. A selection threshold of
10−9 Hartree was used to select the configuration wave
functions of which the electronic wave functions are com-
posed. Potential energy curves for nine low-energy charge-
transfer states significantly coupled to the initial channel
were computed for R between 0.8 and 110. Corresponding

nonadiabatic couplings 〈Q(R)i|dQ(R)j/dR〉 were evalu-
ated by using a numerical differentiation method.

Figure 1 shows the resulting manifold of potential en-
ergy curves for the electronic states considered in the cal-
culation. In Figure 1a, the potential energy curves are
labeled with the asymptotic assignment of the respec-
tive states, which corresponds either to the initial chan-
nel (C4+|He), single-capture (C3+|He+) or double capture
(C2+|He2+) states. In addition, adiabatic states are num-
bered with increasing energy in Figure 1a. The location
of the avoided crossing point at R = Rx, which medi-
ates the double electron capture, is shown in Figure 1b.
This crossing point between states No. 3 and 4 at Rx is
denoted by an empty circle in Figure 1b. Note also the se-
quence of diabatic curve crossings between states 4-5, 5-6,
and 6-7 therein (grey circles). This sequence of crossings
is further continued in Figure 1c up to the asymptotic re-
gion along the horizontal line, which corresponds to the
1s2 − 1s2 electronic configuration of initial state. Except
for the crossing point at Rx, the behavior of all other
avoided crossing is dominantly diabatic, i.e. the minimal
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Fig. 2. Adiabatic curves: two-state model.

separation of adiabatic curves is very small, major elec-
tronic configurations of each crossing pair of the adiabatic
states are mutually exchanged at either side of the cross-
ing point, and the corresponding derivative coupling term
exhibits a narrow peak at each diabatic crossing. The po-
tential energy in the initial collision state remains flat over
a long region of distance, because the first interaction cor-
rection, the polarization term between C4+ and He, be-
haves as ∼ R−4. The potential in the electron capture
channels decays as 3/R (SC) or 4/R (DC) at large values
of R. All capture processes are driven by the behavior of
electronic states and their nonadiabatic coupling (both ra-
dial and angular components) at shorter distances, where
exothermic transitions may take place.

The avoided crossing in Figure 1b (Rx ∼ 3) is by large
the main transition mechanism for the double electron
capture, which can be seen from the behavior of poten-
tial energy curves 3 and 4 in the vicinity of the cross-
ing point, and is also supported by the analysis of corre-
sponding nonadiabatic couplings. At the transition region,
the FWHM of the broad coupling peak is RFWHM ∼
0.38 a.u., and throughout this region the two potential
energy curves are almost parallel. It is well known that
nonadiabatic transitions easily occur at avoided crossings
of this type [11].

The crossing point features can be seen in Figure 2 in
more detail, along with the empirical potential curves used
by Danared and Barany in analytical form [3] (dashed
line). The crossing point calculated here is 0.5 a.u. lower
than that of the model potentials (dashed line) [3]. The
adiabatic curves from our calculation coincide well with
the model potentials shifted to the transition point (dotted
line) throughout the entire transition region, but differ
at larger distances. Such a difference should not have an
impact on the transition probabilities, although it may
appear as a phase in the scattering amplitudes.

Figure 3 shows the diabatic potentials, which are ob-
tained by a rotation matrix C applied on the 2-by-2 diag-

Fig. 3. Diabatic curves: two-state model.

onal matrix of adiabatic potentials. The matrix C satisfies

C(R) = I +
∫ ∞

R

A(R′)C(R′)dR′, (1)

where Ai,j(R) = (1 − δi,1−j)〈i|d/dR|j〉 for i, j = 1, 2. In
the basis of electronic states rotated by C(R), all nonadi-
abatic coupling terms identically vanish. Such a represen-
tation is required in the full quantum calculations [12,13].
The present results differ significantly from those based on
the shifted diabatic potentials. This is plausible since in
general, the adiabatic potential matrix includes only the
two eigenvalues, while a full 2-by-2 Hamiltonian matrix
consists of three independent elements, and in particular
it depends on the behavior of the derivative coupling term.

3 Charge transfer collision dynamics

In this section, we review the standard kinematic relations
and reference frame transforms [14], and summarize the
procedure to obtain differential cross-sections.

The angle-differential cross-section in the laboratory
system (angle θL) consists of two contributions in the
center-of-mass frame,

θCMS± = cos−1
[
−ξ sin2 θL ± (1 − ξ2 sin2 θL)1/2 cos θL

]
,

(2)
with ξ = m1vi/(m2vf ), where m1,2 is the mass of the
projectile and the target, respectively, and vi,f the initial
and final relative velocity. The differential cross-sections
then transform as

dσ

dΩL
(θL) =

(
1 + 2ξ cos θL + ξ2

)3/2

|1 + ξ cos θL|
dσ

dΩCMS
(θCMS), (3)

for scattering angles up to the maximum θL,max =
sin−1 ξ−1.

Given a particular gain/loss of projectile internal en-
ergy Q in the scattering event, the energy gain of the pro-
jectile (energy E0) and the scattering angle are equivalent,
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Fig. 4. Double-differential cross-section for double electron
capture to C2+(1s22s2 1S).

according to

∆(E) =
(

m1

m1 + m2

)2

E0 cos2 θL

×
{

1 +
[
1 − m2

2 + m1m2

m2
1 cos2 θL

(
m1

m2
− 1 − Q

E0

)]1/2
}2

− E0,

(4)

which yields the cross-section transform

− dσ

d(∆E)
=

π(m1 + m2)2(1 + γ/ cos2 θL)1/2

m2
1E0 cos θL[1 + (1 + γ/cos2θL)1/2]2

dσ

dΩL(θL)
. (5)

The de Broglie wave length of the projectile at the lowest
energy considered in this work is 1.5 × 10−3 a.u., due to
the large mass of the C4+ projectile, and much below the
characteristic distance of the potential matrix. Therefore
we apply the eikonal approximation for solving the cou-
pled equations for state-dependent amplitudes cj,i0(b, z),
j = 1, 10. The semiclassical formulation of these equations
is given in detail in references [15,16] (cf. also references
therein) and thus will not be repeated here. The cross-
section then follows from the diffraction integral,

dσ

dΩ
(θ) = (mv)2

∣∣∣∣
∫ ∞

0

J0(ηb)cfi0(b;∞)bdb

∣∣∣∣
2

, (6)

where m is the reduced mass, v is the relative collision ve-
locity, J0 is the Bessel function and η = 2mv sin(θ/2) [15].
To calculate the diffraction integral in equation (6), we
employ a 10,000-point grid of impact parameters.

 

 

Fig. 5. Angle-differential cross-section for electron double cap-
ture to C2+(1s22s2 1S) at 270 eV.

 

 

 

 

Fig. 6. Angle-differential cross-section for electron double cap-
ture to C2+(1s22s2 1S) at 400 eV.

4 Results and discussion

Before presenting the calculated cross-section results, let
us briefly discuss the experimental results previously pub-
lished [1,2]. Figure 4 shows a map of the differential cross-
section at E0 = 400 eV resolved both in the angle θL

and energy gain/loss ∆(E) variables. The parabolic bor-
der along which the cross-section peaks are located is given
by equation (4) with Q ∼ 33.4 eV, which corresponds to
the transition from C4+ ground-state to C2+ ground state.
In the following, we compare theoretical data to the mea-
surements by Hoshino et al. published previously [1,2].

The angle differential cross-sections calculated for
E0 = 270, 400 and 470 eV are shown in Figures 5, 6
and 7 (full lines), along with the experimental data. It
can be seen that the previous experiments could not re-
solve well oscillatory structures in the θL dimension. In
Figures 5 and 7, a better agreement could be obtained if
the experimental data are shifted by 1 deg and 0.5 deg,
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Fig. 7. Angle-differential cross-section for electron double cap-
ture to C2+(1s22s2 1S) at 470 eV.

Fig. 8. Energy-gain differential cross-section for double elec-
tron capture to C2+(1s22s2 1S) at 400 eV.

respectively. Such a shift is still consistent with the ex-
perimental error bars reported in [1,2]. Our results indi-
cate that such a systematic correction of the experimental
data could be appropriate, although the angular resolution
of previous experiment is somewhat low. Next, the situ-
ation substantially improves when we compare with the
differential cross-sections resolved in the energy gain/loss
variable ∆E, i.e. the two-dimensional map in Figure 4
integrated over the θlab variable. Since the experimental
cross-sections are subject to much smaller errors in ∆(E),
the oscillatory cross-section structures in Figure 8 are now
much better resolved. The agreement of the present re-
sults with experiment in Figure 8 is considered to be very
good, especially when taking into account the sensitivity
of differential cross-sections to the details of ab initio po-
tentials and couplings. Since the energy resolution in the
experiment is about 1 eV (250 meV/q for scattering ion
analyzer), the full depth of the cross-section minima could
not be resolved in the measurements.

The calculated angle-differential cross-sections in Fig-
ures 5–7 clearly show the existence of Stueckelberg oscil-
lations. Due to relatively weak coupling of other channels,
the cross-section minima fall near zero, which is a typical
feature for two-state systems. Therefore in order to as-
sess the applicability of two-state classical models to the
present results, we have also calculated the semiclassical
phases on the ab-initio adiabatic potentials, i.e.

θCMS,i(b) = π − 2b

∫ Rx

Rt,i

dR

R2(1 − Ui(R)/E − b2/R2)1/2
,

(7)
i = 1, 2. Here Rt,i is the turning point on adiabatic
potential Ui and Rx the crossing point. The Stueckelberg
phase in the semiclassical model is then given by the
phase integral of the inverse function along the two bi(θ)
branches [3],

φ(θCMS) =
√

2mE

∫ θCMS

θ(Rx)

(b1(θ) − b2(θ))dθ. (8)

The oscillatory factor cos(φ(θlab)) shown in Figure 6 as a
dashed line differs considerably from the rigorous result.
Neither the frequency of oscillations nor their location is
correctly reproduced. We attribute the reasons for which
the semiclassical formalism does not apply well in this
case especially to (1) the delocalized character of nonadi-
abatic transition at the crossing point, and (2) a neglect
of transition phases at the crossing point.

5 Concluding remarks

We have calculated the differential cross-sections for dou-
ble electron capture to C2+ ground-state in the collisions
of C4+ with He based on ab initio potentials and cou-
plings. The double electron capture channel to C2+(1s22s2

1S) by far dominates capture to other states, which could
be explained by the analysis of the crossing point in the
delocalized transition region. The present diabatic poten-
tial matrices and double capture cross-sections differ from
those based on the 2-state model [3]. The Stueckelberg os-
cillations in the calculated results could not be resolved in
the data measured by Hoshino et al. [1,2] because of insuf-
ficient resolution in the experiment. On the other hand,
the oscillatory structures in the energy gain differential
cross-sections agree very well with the experimental data,
suggesting this kind of spectroscopy to be a useful tool for
studying state-resolved electron capture processes. Fur-
ther experimental work is in progress to confirm the cross-
section structures seen in the theoretical calculation.
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